Activity-dependent spatially localized miRNA maturation in neuronal dendrites.

نویسندگان

  • Sivakumar Sambandan
  • Güney Akbalik
  • Lisa Kochen
  • Jennifer Rinne
  • Josefine Kahlstatt
  • Caspar Glock
  • Georgi Tushev
  • Beatriz Alvarez-Castelao
  • Alexander Heckel
  • Erin M Schuman
چکیده

MicroRNAs (miRNAs) regulate gene expression by binding to target messenger RNAs (mRNAs) and preventing their translation. In general, the number of potential mRNA targets in a cell is much greater than the miRNA copy number, complicating high-fidelity miRNA-target interactions. We developed an inducible fluorescent probe to explore whether the maturation of a miRNA could be regulated in space and time in neurons. A precursor miRNA (pre-miRNA) probe exhibited an activity-dependent increase in fluorescence, suggesting the stimulation of miRNA maturation. Single-synapse stimulation resulted in a local maturation of miRNA that was associated with a spatially restricted reduction in the protein synthesis of a target mRNA. Thus, the spatially and temporally regulated maturation of pre-miRNAs can be used to increase the precision and robustness of miRNA-mediated translational repression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The PICK1 Ca2+ sensor modulates N-methyl-d-aspartate (NMDA) receptor-dependent microRNA-mediated translational repression in neurons

MicroRNAs (miRNAs) are important regulators of localized mRNA translation in neuronal dendrites. The presence of RNA-induced silencing complex proteins in these compartments and the dynamic miRNA expression changes that occur in response to neuronal stimulation highlight their importance in synaptic plasticity. Previously, we demonstrated a novel interaction between the major RNA-induced silenc...

متن کامل

A large-scale functional screen identifies Nova1 and Ncoa3 as regulators of neuronal miRNA function.

MicroRNAs (miRNAs) are important regulators of neuronal development, network connectivity, and synaptic plasticity. While many neuronal miRNAs were previously shown to modulate neuronal morphogenesis, little is known regarding the regulation of miRNA function. In a large-scale functional screen, we identified two novel regulators of neuronal miRNA function, Nova1 and Ncoa3. Both proteins are ex...

متن کامل

Synaptic Control of Secretory Trafficking in Dendrites

Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER) from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial rang...

متن کامل

Stabilization of dendritic arbor structure in vivo by CaMKII.

Calcium-calmodulin-dependent protein kinase II (CaMKII) promotes the maturation of retinotectal glutamatergic synapses in Xenopus. Whether CaMKII activity also controls morphological maturation of optic tectal neurons was tested using in vivo time-lapse imaging of single neurons over periods of up to 5 days. Dendritic arbor elaboration slows with maturation, in correlation with the onset of CaM...

متن کامل

PICK1 links Argonaute 2 to endosomes in neuronal dendrites and regulates miRNA activity

MicroRNAs fine-tune gene expression by inhibiting the translation of mRNA targets. Argonaute (Ago) proteins are critical mediators of microRNA-induced post-transcriptional silencing and have been shown to associate with endosomal compartments, but the molecular mechanisms that underlie this process are unclear, especially in neurons. Here, we report a novel interaction between Ago2 and the BAR-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 355 6325  شماره 

صفحات  -

تاریخ انتشار 2017